【2020第一财经·摩根大通年度金融书籍】《联邦学习》
2021-03-04 10:59:43 第一财经研究院

榜单11-联邦学习.PNG

《联邦学习》

作者:杨强、刘洋、程勇、康焱、陈天健、于涵

出版社:电子工业出版社


【获奖理由】本书凝结了作者及其团队在联邦学习领域的多年学术成果和工程经验,全面且系统地论述了联邦学习的理论、算法、平台及应用,剖析并探讨了联邦学习的相关前沿学术成果及应用落地问题,是一部从实践中提炼经验与知识的著作。


人工智能安全

张钹/文

21世纪初,人工智能(Artificial Intelligence,AI)进入以深度学习为主导的大数据时代,基于大数据的机器学习既推动了AI 的蓬勃发展,也带来一系列安全隐患。这些隐患来源于深度学习本身的学习机制,无论是在它的模型建造(训练)阶段,还是在模型推理和使用阶段。这些安全隐患如果被有意或无意地滥用,后果将十分严重。当前AI 安全已引起人们普遍的关注,各项的治理措施也因此积极开展。AI 治理有以下几个不同的维度,即技术、法律、经济和文化等。“联邦学习”(Federated Learning)正是在这个背景下提出和发展起来的,它主要从技术维度出发,重点研究其中的隐私保护和数据安全问题。那么联邦学习是如何保护隐私和数据安全的?它包括两个过程,分别是模型训练和模型推理。在模型训练阶段,模型相关的信息可以在各方之间交换,但数据不能交换,因此各个站点上的数据将受到保护。在模型推理阶段,训练好的联邦学习模型可以置于联邦学习系统的各参与方,也可以供多方共享。这是联邦学习的具体过程,也就是它的定义。

本书是关于联邦学习的介绍,共11章,内容丰富。从广度上看,书中讨论了四种联邦学习的基本类型,即横向联邦学习、纵向联邦学习、联邦迁移学习和联邦强化学习,还讨论了相关的联邦学习激励机制和分布式机器学习。从深度上看,书中包括原理、算法、平台和应用实例。本书作者杨强等均来自微众银行,他们都参与了联邦智能使能器(Federated AI Technology Enabler,FATE)的联邦学习平台的开发。本书的许多思想来源于这个实践,因此具有实用性。本书可以作为计算机科学、人工智能和机器学习专业的学生,以及大数据和人工智能应用程序开发人员的入门参考书,也可供本科高年级学生或者研究生、大学的教员和研究机构的研究人员阅读。

(本文系《联邦学习》序言,作者系中国科学院院士、清华大学人工智能研究院院长)


分享到微信朋友圈 ×
打开微信,点击底部的“发现”,
使用“扫一扫”即可将网页分享至朋友圈。